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ABSTRACT: In this study, the accuracy of three methods for stature estimation of children from long bone lengths was investigated. The sample
utilized consists of nine identified immature skeletons (seven males and two females) of known cadaver length, aged between 1 and 14 years old.
Results show that stature (cadaver length) is consistently underestimated by all three methods (from a minimum of 2.9 cm to a maximum of
19.3 cm). The femur ⁄ stature ratio provided the least accurate estimates of stature, and predictions were not significantly improved by the other two
methods. Differences between true and estimated stature were also greatest when using the length of lower limb bones. Given that the study sample
children grew in less than optimal environmental conditions, compared with the children that contributed to the development of the methods, they
are stunted and have proportionally shorter legs. This suggests that stature estimation methods are not universally applicable and that environmental
differences within a population (e.g., socioeconomic status differences) or differing levels of modernization and social and economic development
between nations are an important source of variation in stature and body proportions of children. The fallibility of stature estimation methods, when
they do not consider such variation, can be somewhat minimized if stature is estimated from the length of upper limb bones.
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In forensic cases, stature is seldom estimated from human
remains when they are from a child. As Smith (1) points out, age
is a key attribute for positive identification of children, whereas
stature is less frequently critical. For this reason, long bone lengths
are more likely to be used for estimating age rather than stature.
However, in situations that involve commingling (or presumption
of) of remains, such as multiple murders, mass disasters, or war
crimes, estimating stature can be decisive in the identification of
remains of children, particularly if they are of the same dental age.
Snow and Luke (2) describe a case that can be illustrative of the
importance of accurate stature estimates. In the summer of 1967,
two girls disappeared from the Oklahoma City area. The girls were
practically of the same age and stature estimation proved to be cru-
cial to the identification, because it was fully consistent with one of
the girls. The confidence intervals of the estimate had overlapped
the two girls’ stature and no reliable results could be obtained, thus
precluding a positive identification. Because stature can play such
an important role in the positive identification of a pre-existing
child profile, it is essential to estimate it with accuracy. Even if a
pre-existing profile is unlikely to exist, stature can represent an
important means of establishing identity. In addition, because it
may be of interest to estimate the body mass and stature of fossil
or archeological specimens for comparison with modern children
(3–7), the accuracy of current stature techniques is also important.

The purpose of this technical note is to test the accuracy of three
methods of stature estimation of children from long bone lengths.
There are several methods with which to estimate stature of chil-
dren and most rely on long bone lengths, although regression equa-
tions for stature based on second metacarpal length have also been
proposed (8,9). The methods assessed in this study are the
femur ⁄ stature ratio proposed by Feldesman (10) and the regression
equations developed by Telkk� et al. (11) and Smith (1). These
methods are all based on growth studies of living children where
long bone lengths were obtained from radiographs. Although other
stature estimation methods for children are available, they were
considered unreliable techniques, either because stature has to be
interpolated from tables (12–14) or because long bone lengths were
obtained in living subjects from anthropometric landmarks (15–18).
A sample of identified Portuguese child skeletons, which include
cadaver length information from autopsy reports, provided the rare
opportunity to investigate how closely stature estimated from each
of these methods is from true stature. As far as the author is aware,
this is the first study that has examined the accuracy of stature esti-
mates from long bone lengths in children.

Materials and Methods

The materials studied consist of immature skeletons of known
sex and age at death from the identified skeletal collection housed
at the Bocage Museum in Lisbon, Portugal (19).

The source of the remains in this collection are unclaimed skele-
tons from the local cemeteries in Lisbon (see Ref. [19] for more
details) and most of the individuals represent the middle to low
social class of the city of Lisbon, as inferred from the origin of the
remains and from the occupations of the males (19). In the collec-
tion, from a total of 127 immature skeletons under 16 years of age,
23 were found to be autopsied at a local hospital in Lisbon and at
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the National Institute of Legal Medicine, also in Lisbon. As stan-
dard measurements, such as cadaver length, are routinely collected
by the medical examiner from the corpse during autopsy, a mea-
sure of living stature could potentially be available for these 23
children. However, we were only allowed access to the autopsy
records of those children (n = 11) examined at the National Insti-
tute of Legal Medicine, in Lisbon. Out of these cases, one could
not be located in the archives and in another the autopsy file had
not recorded cadaver length. Therefore, the sample was comprised
of the remains of nine immature individuals of known cadaver
length, of whom two were females and the remaining were males.
Individuals’ dates of death fall between 1956 and 1972, and their
ages vary from 1 to 14 years old. Because the growth status of
these children at the time of their death is essential to assess the
reliability of the stature estimation methods utilized, it is important
to note that all, except two, lie below the 10th percentile of height-
for-age of the WHO growth reference. This is an indication that
the study sample children are stunted and a confirmation of their
relative low socioeconomic status. Although this is a small sample,
due to the dearth or inexistence of immature skeletal remains of
known living height, it represents an important and rare test case to
examine the accuracy of some of the most common techniques to
estimate stature from long bone lengths of children.

Cadaver length was recorded by the medical examiners at the
time of autopsy with the cadaver in supine position as the length
from vertex to heels measured with a spreading caliper. Cadaver
length was recorded in centimeters and in this study it was consid-
ered an approximate measure or proxy for living standing stature.
Long bone lengths were measured on the curated specimens after
they became available to the Bocage Museum, several years after
death, burial and exhumation, and later curation of the remains by
the Museum (see Ref. [19] for more details). Long bone measure-
ments in Smith’s (1) and Feldesman’s (10) regression equations are
of diaphyseal length. Diaphyseal (inter-metaphyseal) length of
humerus, radius, ulna, femur, tibia, and fibula were measured as
maximum lengths, parallel to the long axis of the bone, between
proximal and distal ends, not including epiphyses. Only left bones
were measured using an osteometric board and recorded to the
nearest whole millimeter. Although the sample includes older chil-
dren (13 and 14 years old), their long bones showed unfused epiph-
ysis and, therefore, only the inter-metaphyseal length was obtained
from these individuals. Two additional lengths were obtained from
the femur and tibia, as described by Telkk� et al. (11), to conform
to their respective regression formulas. The femur measurement
was obtained as the maximum oblique length between the proximal
metaphyseal end and the medial surface of the distal metaphysis,
whereas the tibial length was measured as the maximum oblique
distance between the lateral metaphyseal surface of the proximal
end and the medial metaphyseal surface of the distal end. The other
long bone measurements illustrated by Telkk� et al. (11) appear to
be equivalent to maximum inter-metaphyseal lengths as measured
here.

In all three methods examined, stature was measured from
living subjects and long bone lengths were also obtained from the
living but on radiographs. Compared with these methods, long bone
lengths in this study were obtained from dry material and stature
was established from cadaver length. Relative to living wet bone,
dry bone tends to suffer a certain amount of shrinkage (20–23) and
because there will be a certain amount of radiographic enlargement
(24–27), dry and living long bones in radiographs will also differ
in overall size. Additionally, stature as measured on the cadaver
tends to overestimate stature measured on a living standing subject
(21,28–30). Yet, these factors may tend to cancel one another in

this study, as a correction factor would have to be added to long
bone lengths and another correction factor subtracted from cadaver
length. Regardless of whether one can assume or not that these fac-
tors will successfully cancel off each other, correcting dry to wet
living radiographic long bone lengths and cadaver to living stature
was considered relatively ineffective and minor relative to the vari-
ous potential sources of error in an actual forensic case. Not only
do different researchers disagree on the amount of adjustment
required to convert cadaver to living stature, but the actual stature
of a certain person may vary significantly during the day. For
example, Trotter and Gleser (21) have shown that, in adults, cada-
ver stature is on average 2.5 cm greater than is living height, but
this only applies to stature measured on hanging cadavers. Duper-
tius and Hadden (30), on the other side, conclude that any differ-
ence between living stature and supine cadaver length is
insufficient to warrant special consideration. Even if we assume
that there is a certain amount of stretching when measuring stature
on a cadaver, a maximum mean daytime loss of stature of up to
2.81 cm has been observed in living adult subjects (31). Propor-
tional amounts of shrinkage have also been reported in children’s
daytime stature variation (32–34). Another major source of error in
a forensic case is that stature estimates will most likely be com-
pared with a reported stature, rather than a true measured stature
(35,36). This is probably the most important source of error in
forensic cases, as reported stature tends to be greater than measured
stature. Although there is no information on the accuracy of
reported stature in children, available data for adults suggests that
dissimilarities between reported and measured stature are also likely
to occur in children. For example, overestimation of measured stat-
ure by reported stature in adults varies from approximately 1 cm
(37) to 2.5 cm or more (35,38), which amounts to about as much
as the adjustment required to converting cadaver to living stature.
Discrepancy between measured and reported stature is particularly
problematic for children, as there are usually no official records of
reported stature in children, such as records of height in driver’s
licenses, identification or national citizenship cards. Even if there
were such official records, they would tend to be unrealistic as the
height of a child changes rapidly over time and is taken at the time
the document is being issued and not at the time or prior to death.
However, in such a situation it would not be difficult to project the
stature from the time it was taken to the time of death or dis-
appearance, but this would entail a certain amount of error and it
would still be a projected rather than a measured stature. In an
actual forensic case, measures of stature in children are, therefore,
dependent on stature reported by parents or peers. Although mea-
sured stature can be obtained from measurements routinely made
by the family pediatrician (2), it may have also been obtained
several months or years before death. Additionally, in developing
countries or in the lower classes, such information can be simply
inexistent due to limited access to medical care. Although there are
various potential sources of error, when estimating stature of chil-
dren (or of adults) in an actual forensic case, we can still aspire to
the best approximation and this is what is under examination here.

For each individual in the sample a stature estimate was obtained
from each long bone and the respective 95% confidence interval
was also calculated according to the specific methods. The ratio
proposed by Feldesman (10) only allows stature to be estimated
from femur length and no 95% confidence interval can be calcu-
lated from it. When using this method, only children between the
ages of 8 and 18 were considered as it only applies to them. Simi-
larly, the regression equations devised by Smith (1) only allows
stature to be estimated in 3- to 10-year-olds. Different regression
equations were applied to estimate the stature of children between
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the ages of 1 and 9 and children between 10 and 15 when using
the technique described by Telkk� et al. (11). All three methods
provide sex-specific regression equations but only Feldesman (10)
and Smith (1) provide equations for when sex cannot be deter-
mined. Simple differences between cadaver length and estimated
stature were calculated to assess how closely estimates obtained
from the three methods and from the different long bones are from
true stature. Because some individuals did not preserve all the long
bones, stature estimates reflect the preservation status of the
sample.

Results and Discussion

Individual stature estimates obtained from each of the three
methods are shown in Tables 1–3. Results are presented by individ-
ual long bone and include cadaver length. Table 4 shows the differ-
ences between stature estimates obtained from the three different
methods and cadaver length. In Table 4 results are also presented
by individual specimen and illustrate simple differences between
true and estimated stature, in the case of estimates obtained from
Feldesman’s (10) method, or mean differences between true and
estimated stature calculated from all four long bones, when esti-
mates are obtained from Smith’s (1) and Telkk� et al. (11) regres-
sion equations. In addition, mean differences between true and
estimated stature were broken down in Table 4 by mean differ-
ences between true and estimated stature obtained from the upper
limb bones and mean differences between true and estimated
stature obtained from the lower limb bones.

Results show that all three methods consistently underestimate
stature as measured by cadaver length. This is particularly true for
the femur ⁄ stature ratio (10), which tends to underestimate stature
by around 19 cm. The regression equations developed by Smith (1)
provide the smallest mean difference between true and estimated
stature ()4 cm). Telkk� et al. (11) regression equations underesti-
mate true stature by an amount that is between the two other meth-
ods ()6 cm). Differences between true and estimated stature are so
significant that in some instances the estimated stature is almost at
or at the upper limit of the confidence interval provided by each
method. In only two cases was estimated stature found to be close
to true stature. They are specimen #1534-A, a 1-year-old boy, and
specimen #1533, a 7-year-old boy. However, the closeness of esti-
mated and true stature was only obtained with one method and not
with all methods. For example, estimated stature of specimen
#1533 is close to true stature when Smith’s (1) method is used, but
not when Telkk� et al. (11) regression equations are employed.
Unfortunately because of the small sample size not a lot of weight
can be placed on the results, particularly as most of the subjects
are between 7 and 14 years of age, and comments regarding chil-
dren under 7 years of age must be made with caution. Neverthe-
less, an interesting pattern seems to arise where all three methods
consistently underestimate stature.

TABLE 1—Estimates of stature according to the femur ⁄ stature ratio
(Ref. [10]) for when sex is known and when sex is unknown.

Specimen Age Sex

Cadaver
Length
(cm)

Stature
(sex specific)

(cm)

Stature
(unknown

sex)

629 10.92 F 128 104.8 105.1
753-A 13.92 F 140 111.7 111.2
1180 8.92 M 122 109.3 108.7
574 9.75 M 124 110.8 110.2
1564 14.17 M 138 119.4 120.2
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Using cadaver length as a proxy for true standing stature is,
probably, an unlikely cause for the results in this study. Even if
stature was measured in the cadaver as if it was considerably
stretched, this would hardly explain differences of up to 28 cm
between cadaver length and estimated stature. Uncorrected regres-
sion formula for radiographic magnification of long bone lengths in
Telkk� et al. (11) study may also be of some concern, but this
would also be an unlikely explanation for such large differences
between cadaver length and estimated stature. In addition, stature is
consistently underestimated using all three methods, suggesting that
the explanation may lie in the study sample itself. Inaccuracy of
methods are, instead, likely to derive from differences in relative
proportions of long bone length to body height between the chil-
dren that contributed to the development of each method and the
study sample children. The results suggest that the Lisbon children
have proportionally shorter limb bones to stature than what would
be expected from their stature estimates. In this respect, it is inter-
esting to note that the regression equations devised by Smith (1)
and Telkk� et al. (11) are least accurate when estimating stature
from lower limb bones, compared with upper limb bones. This
means that the Lisbon children have particularly shorter legs
relative to stature.

Longitudinal studies have shown that leg length is the most
important component responsible for the rapid growth of stature
during childhood and adolescence (39–41). Leg length during child-
hood and adolescence grows very rapidly and contributes more to
the variability in stature than trunk size that grows very slowly.
Being the fastest growing segment, the legs are more sensitive to
environmental conditions and deficits in stature result in proportion-
ately shorter legs (41). In general, a relatively long leg implies a
rapid growth and the influence of positive environmental factors
during childhood and adolescence. Conversely, relatively short legs
imply a slow growth and the influence of negative environmental
factors during childhood and adolescence. Considerable evidence
has accumulated to support the assertion that most of the deficit in
stature of children who have grown in poor environmental circum-
stances derives from a reduction in leg length. For example,
Buschang et al. (42) have found that statural growth differences
between mild-to-moderate Mexican and North American school-
children are accounted for by diminished growth rates of leg
length. Other studies showed that secular increases in height are to
a greater extent the results of increased leg length rather than
increased trunk height (43). Frisancho et al. (44) have also empha-
sized the impact of the environment on body proportions, in a
study which has found that leg length of Mexican-Americans aged
2 to 17 years old was significantly associated with socioeconomic
status. Individuals from the poorer families had significantly shorter
legs, but equal trunk length, compared with boys and girls from the
better-off families. Similarly, Bogin and co-workers (45–47) have
shown that Maya children in Guatemala have significantly shorter
legs in proportion to trunk than do Maya-American children, who
have body proportions more similar to American children.
Although the Maya-Americans are of low socioeconomic status for
the United States, they live in much more favorable conditions for
growth and development than Maya children in Guatemala and
hence the difference in body proportions.

Data presented here and in previous studies (48,49) have shown
that the study sample children are of low socioeconomic status and
grew in poor environmental conditions, almost 50 years ago. As a
consequence, they are stunted and have proportionally shorter legs
relative to the Denver growth study children, who served as source
for Feldesman’s (10) and Smith’s (1) stature estimation techniques.
Comparatively, the children sampled for the Denver study are from

families whose socioeconomic status is characterized as middle-
to-upper-middle class (50). In addition to using Denver growth
study data, Feldesman (10) also included two other samples, one
from the Harvard School of Public Health Study and the other
from British school children, which include a disproportionate num-
ber of higher social class children (51). Although there is no back-
ground information on the Finish sample utilized by Telkk� et al.
(11), it is also likely that it too derives from a high socioeconomic
segment. In addition to differing social status, the level of social
and economic development and standard of living in the United
States and Finland in the 1950s and 1960s was considerably higher
than that in Portugal during the same period of time. Therefore, the
short stature and short legs of the Lisbon children are not only an
expression of their low socioeconomic status, but also of the overall
poorer environmental conditions provided by the society in which
they grew, namely in terms of access to adequate nutrition and
health care.

It is unlikely that a genetic explanation can account for differ-
ences in body proportions between the study sample and the chil-
dren that contributed to the development of each stature estimation
method. In a growth study carried out between 1993 and 2001,
Varela-Silva (52) show that relative leg length or trunk height does
not differ significantly between Portuguese and American children,
when using the NHANES II growth reference. Although the study
sample children show altered body proportions 50 years ago, they
are only a few of generations older and this is too little time for
any important genetic change to take place. The rapid change in
height which occurred in the last 30 years, because of improve-
ments in social and economic conditions in Portugal (53), is
instead, the likely explanation for this alteration in body proportions
of Portuguese children.

Given that relatively shorter legs are associated with lower socio-
economic, nutritional, or health status (42–47,54), it is no surprise
that stature, as a whole, is underestimated in most children and
using most of the bone lengths, particularly the lower limb bones.
This differential growth of the legs relative to the trunk in poor
environmental circumstances, explains why mean difference
between true and estimated stature, obtained from Smith’s and
Telkk� et al. regression formulas, is smaller when using any of the
upper limb bones than when using the femur, tibia, or fibula.
Because stunted children tend to have proportionally shorter legs,
the femur ⁄ stature ratio in these children is also distorted and that is
why Feldesman’s (10) method was also not accurate. These results
suggest that using the length of upper limb bones is slightly more
reliable in stature estimation because it is less sensitive to environ-
mental variations. Because there will be more variation in length
and relative proportions of the lower limb bones due to differences
in nutritional, health or socioeconomic status, and also to secular
change effects, the upper limb will provide more stable estimates
across these different factors that affect the quality of stature
estimations.

It is interesting to note that all three methods are least accurate
in girls, where differences between estimated and true stature are
greatest. In a previous study (48), it was shown that females seem
to be more affected in their development by environmental condi-
tions than males in the Lisbon sample, which was attributed to
preferential care towards males or neglect towards females in the
growth period. However, given that the female sample size is made
of only two individuals, it may just reflect random variation in such
a small sample.

Socioeconomic status differences within populations and differ-
ing levels of modernization and socioeconomic development
between populations are probably the most important factors
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explaining variations in growth status that can impact negatively on
accuracy of stature estimation methods. The methods examined
here have their origins in growth studies of well-nourished, well-
cared-for children from either North America or Northern Europe
and, as such, represent optimal rather than average or modal
growth rates and cannot generate universally applicable methods.
They represent neither the poorer children of their own societies,
nor the underprivileged children of the developing nations. It has
been shown that skeletal maturational delays related to socioeco-
nomic differences between populations will make standards devel-
oped on the well-off children inapplicable to children of developing
nations, as their skeletal ages will tend to underestimate true chro-
nological age (55,56). The same rationale applies for stature estima-
tion of poor children, which will be consistently underestimated
when using standards based on healthy privileged children. This is
particularly problematic, as most child remains that end up in
forensic pathology or anthropology laboratories are of lower socio-
economic status.

The amount of error associated with stature predictions obtained
in this study, suggests that such inaccuracy can result in misidentifi-
cation of cases. However, this problem can be minimized if the
investigator is aware of the potential effects of socioeconomic sta-
tus on the application of these formulas. When there is a pre-exist-
ing profile or a strong presumption of identity, the socioeconomic
status of the child would be of vital importance in the interpretation
of stature estimates obtained from long bone lengths. Even when
there is no a priori presumption of identification, when there is
more than one presumptive child or when there is commingling of
child remains of the same dental age, stature estimates can still pro-
vide vital information for establishing identity.

Conclusion

This study confirms the concerns of Smith (1), who cautions not
to extrapolate the stature estimates widely beyond the population
from which the regression equations derive and to the effects of
nutrition on height and long bone proportions. This applies to cases
when stature has to be estimated from a child that does not derive
from a population or nation at the same level of modernization or
of social and economic development of the population which con-
tributed to the development of the method, or from a child that,
despite belonging to that same population, is of lower socioeco-
nomic status. This study also suggests that any assumptions of sta-
bility of relationship between long bone lengths and stature in
modern populations are questionable and that similar assumptions
when estimating the stature of archeological or fossil specimens are
likely to be untenable. This is mainly because, depending on the
health or nutritional status of a given child, the relative proportions
of the lower limb compared with the trunk or stature will vary.
The lower limb is more susceptible to variations in environmental
circumstances and, therefore, preference should be given to esti-
mates based on upper limb bones, when the socioeconomic back-
ground of the child cannot be determined. Overall, in a forensic
case with a strong presumption of identity, the socioeconomic
status of the child can be of crucial importance in interpreting stat-
ure estimates.
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